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Abstract. Using Heegner points on elliptic curves, we construct points of infinite

order on certain elliptic curves with a Q-rational torsion point of odd order. As

an application of this construction, we show that for any elliptic curve E defined

over Q which is isogenous to an elliptic curve E′ defined over Q of square-free

conductor N with a Q-rational 3-torsion point, a positive proportion of quadratic

twists of E have (analytic) rank r, where r ∈ {0, 1}. This assertion is predicted

to be true unconditionally for any elliptic curve E defined over Q due to Goldfeld

[Go], but previously has been confirmed unconditionally for only one elliptic curve

due to Vatsal [V1].

1. Introduction

Let E be an elliptic curve defined over Q of conductor N and L(E, s) =∑∞
n=1 a(n)n−s be its Hasse-Weil L-function. Let X0(N) be the modular

curve of level N with Jacobian J = J0(N). It is known that there exists a

newform fE(z) =
∑∞

n=1 a(n)qn of level N and a morphism φ : X0(N) → E

defined over Q. This morphism factors in J0(N) through a homomorphism

π : J0(N) → E. Let π∗ : E → J0(N) be its dual map.

Definition 1.1. A Q-rational torsion point P of order l on E is cuspidal if

π∗(P ) is a Q-rational cuspidal divisor of order l in J0(N).

Using Heegner points on X0(N), Birch [Bi] constructed points of infi-

nite order on certain elliptic quotients of J0(N) with a Q-rational cuspidal

torsion point of even order. Later, Gross [Gr] and Mazur [Ma] developed

some methods to construct points of infinite order in Eisenstein quotients of

J0(N), when N is prime.
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In this paper, using techniques similar to those developed by Birch [Bi],

Gross [Gr], and Mazur [Ma], we shall construct points of infinite order on

certain elliptic curves with a Q-rational cuspidal torsion point of odd order.

(See Section 2.)

As an application of this construction, we have the following theorem.

Theorem 1.2. Let r ∈ {0, 1}. Let E be an elliptic curve defined over Q of

square-free conductor N with a Q-rational cuspidal 3-torsion point. Then

]{|DF | < X| Ords=1L(EDF
, s) = r} � X,

where DF is a fundamental discriminant of quadratic field F and EDF
is

the quadratic twist of E.

We do not know yet that every Q-rational torsion point of an elliptic

curve is cuspidal. But, in the proof of Proposition 5.3 of [V3], Vatsal showed

that if E′ is an elliptic curve defined over Q of conductor N such that l2 6 |N

with a Q-rational l-torsion point, then the optimal elliptic curve E in the

isogeny class of E′ has a Q-rational cuspidal l-torsion point. And we note

that if two elliptic curves E′ and E are in the same isogeny class, then

L(E′, s) = L(E, s) =
∑∞

n=1 a(n)n−s. So if DF is coprime to the conductor

of E, then

L(E′
DF

, s) = L(EDF
, s) =

∞∑
n=1

χD(n)a(n)n−s,

where χDF
= (DF

· ) denote the usual Kronecker character. Thus from The-

orem 1.2, we immediately have the following theorem.

Theorem 1.3. Let r ∈ {0, 1}. Let E be an elliptic curve defined over

Q which is isogenous to an elliptic curve E′ defined over Q of square-free

conductor N with a Q-rational 3-torsion point. Then

]{|DF | < X| Ords=1L(EDF
, s) = r} � X,

where DF is a fundamental discriminant of quadratic field F and EDF
is

the quadratic twist of E.

This assertion is predicted to be true for any elliptic curve E defined over

Q by the the following conjecture.
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Conjecture (Goldfeld [Go]). For any elliptic curve E defined over Q,∑
|DF |<X

Ords=1L(EDF
, s) ∼ 1

2

∑
|DF |<X

1.

We note that this conjecture is proved by Iwaniec and Sarnak [I-S] under

assumption of the Riemann hypothesis.

The first unconditional example X0(19) is known by Vatsal [V1]. In [V2],

Vatsal proved that if E be a semi-stable elliptic curve defined over Q with a

Q-rational point of order 3 and good reduction at 3, for a positive proportion

of DF , Ords=1L(EDF
, s) = 0. Recently, we [B-J-K] constructed infinitely

many elliptic curves E defined over Q such that for a positive proportion of

DF , Ords=1L(EDF
, s) = 1.

2. Heegner points on elliptic curves

Let K be an imaginary quadratic field with the fundamental discriminant

DK . For a square-free positive integer c, let O be the order in K with

conductor c and discriminant D = DKc2. Suppose that D = B2 − 4NC

has integer solutions with gcd(N,B, C) = 1. Following [Gr], we denote the

Heegner points on X0(N) with coordinates (j(a), j(na)) by

(O, n, [a]),

where n is a degree-one factor of N in K, a is an invertible ideal of O and

[a] is its ideal class. The Heegner point (O, n, [a]) has coordinates in the ring

class field H corresponding to O. It is known that Gal(H/K) is isomorphic

to the group Pic(O) of invertible ideal classes of O.

Let D = DKc2 = d1d2, where d1 > 0. d2 < 0 are fundamental discrimi-

nants and χ be the corresponding ring class character of Gal(H/K), which

is given by

χ(b) = χd1(Nb) = χd2(Nb),

for an ideal b prime to D. Here, χd1 , χd2 are the quadratic characters

corresponding to the real quadratic field k1 = Q(
√

d1) and the imaginary

quadratic field k2 = Q(
√

d2). Let h1 and h2 be the class numbers of k1 and
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k2 respectively. Then the biquadratic field L = Q(
√

d1,
√

d2) is the fixed

field of kerχ on H.

Let E be an elliptic curve defined over Q of conductor N and φ : X0(N) →

E be a morphism defined over Q. If χ 6= 1, we define

PE(d1, d2) :=
∑

[a]∈Pic(O)

χ(a)φ((O, n, [a])).

Then we have

PE(d1, d2) ∈ E(L)χ,

where E(L)χ is the minus eigenspace for the action of the group Gal(L/K)

on E(L). For more detail, see [B-S] and [Gr].

Now we recall the following work of Ligozat [Li]; if D0 is a Q-rational

cuspidal divisor of order l in J0(N), then there is a Dedekind eta-product

gr :=
∏
d|N

ηrd
d

which is a modular function on X0(N) defined over Q and satisfies

div gr = lD0.

Here η(z) := q1/24
∏∞

n=1(1 − qn) is the Dedekind eta-function and ηd(z) :=

η(dz). The family of integers r = (rd) indexed by all the positive divisors d of

N should satisfy the following four conditions; (i)
∑
d|N

rd = 0, (ii)
∑
d|N

d rd ≡ 0

mod 24, (iii)
∑
d|N

N

d
rd ≡ 0 mod 24, (iv)

∏
d|N

drd is the square of a rational

number. Then we can state the following theorem.

Theorem 2.1. Let l ∈ {3, 5, 7}. Let E be an elliptic curve defined over

Q of conductor N with a Q-rational cuspidal l-torsion point P . Let gr :=∏
d|N ηrd

d be the Dedekind eta-product satisfying div gr = lπ∗(P ). Let w be

the number of units in the imaginary quadratic field Q(
√

d2). Assume that

gcd(l, w) = 1 and the quadratic twists Ed1, Ed2 have no Q-rational l-torsion

points. For d|N , let (d) = dd̄ in O. If χ 6= 1 and l 6 | h1h2(
∑

d|N χ(d)rd),

then PE(d1, d2) is of infinite order in E(L)χ.

Let

L(E,χ, s) := L(Ed1 , s)L(Ed2 , s).
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By the work of Gross and Zagier [G-Z] for a square-free D and the work of

Zhang [Zh] for a general D, we know that if PE(d1, d2) is of infinite order in

E(L)χ, L′(E,χ, 1) does not vanish. By the functional equation satisfied by

each of the factors of L(E,χ, s), we have the following corollary.

Corollary 2.2. Assume that an elliptic curve E satisfies the same condition

of Theorem 2.1. Let ε be the sign of the functional equation of L(E, s). If

εχd1(−N) = −εχd2(−N) = 1,

L(Ed1 , 1) 6= 0 and L′(Ed2 , 1) 6= 0,

and if εχd1(−N) = −εχd2(−N) = −1,

L′(Ed1 , 1) 6= 0 and L(Ed2 , 1) 6= 0.

In [B-J-K], we obtained a similar result for the case of χ = 1 under the

condition that
∏

d|N drd 6= αl for any α ∈ Q. But this case is so restricted

that we can construct only infinitely many elliptic curves E with a positive

portion of rank-one quadratic twists. A main ingredient in the proof of

Theorem 2.1 is Kronecker’s limit formula.

3. Kronecker’s limit formula

Let (O, n, [a]) be the Heegner point on X0(N). We can choose an oriented

basis < ω1, ω2 > of a such that an−1 =< ω1, ω2/N >. Let τ = ω1/ω2. Then

(O, n, [a]) is the Γ0(N) orbit of τ . Since τ ∈ K, τ satisfies an integral

quadratic equation Aτ2 + Bτ + C = 0 with A > 0 and gcd(A,B, C) = 1.

We note that D = B2 − 4AC, A = NA′ and gcd(N,B, A′C) = 1. Let

Qτ (x, y) = Ax2 +Bxy +Cy2 be the binary positive definite quadratic form.

To a positive definite binary quadratic form Q, we associate the zeta

function

ζQ(s) :=
∞∑

m,n=−∞
Q(m,n)−s.

Let r = (rd) is a family of integers rd ∈ Z indexed by all the positive

divisors d of N such that
∑

d|N rd = 0. Let ∆(z) := η(z)24 and ∆d(z) :=

∆(dz). The modular unit ∆r(z) :=
∏

d|N ∆(dz)rd is a modular function on

X0(N) defined over Q. We define

ζ(∆r, τ, s) :=
∑
d|N

rdd
−sζdτ (s),
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where ζdτ (s) := ζQdτ
(s) and Qdτ = A

d x2 + Bxy + dCy2.

The first Kronecker limit formula implies that the function ζ(∆r, τ, s) is

holomorphic except for a simple pole at s = 1, vanishes at s = 0 and

ζ ′(∆r, τ, 0) = − 1
12

log|∆r(τ)|

[Theorem 1.2, D-D].

Proposition 3.1. Let L(χ, s) be the abelian L-function of the character

χ 6= 1. For d|N , let (d) = dd̄ in O and S :=
∑

d|N χ(d)rd. Then

SL′(χ, 0) = − 1
12

log |
∏

[a]∈Pic(O)

∆r(τ)χ(a)|.

Proof: Since ζ(∆r, τ, s) :=
∑

d|N rdd
−sζdτ (s),

ζ ′(∆r, τ, s) =
∑
d|N

rdd
−sζ ′dτ (s)−

∑
d|N

rdd
−s(log d)ζdτ (s).

Since ζdτ (0) = −1 for all d|N ,

ζ ′(∆r, τ, 0) =
∑
d|N

rdζ
′
dτ (0) +

∑
d|N

rd log d.

So ∑
[a]∈Pic(O)

χ(a)ζ ′(∆r, τ, 0)

=
∑

[a]∈Pic(O)

χ(a)
∑
d|N

rdζ
′
dτ (0) +

∑
[a]∈Pic(O)

χ(a)
∑
d|N

rd log d

=
∑

[a]∈Pic(O)

χ(a)
∑
d|N

rdζ
′
dτ (0)

=
∑
d|N

χ(d)rd

∑
[a]∈Pic(O)

χ(da)ζ ′dτ (0)

= S
∑

[a]∈Pic(O)

χ(da)ζ ′dτ (0).

Since L(χ, s) =
∑

[a]∈Pic(O) χ(a)ζτ (s),

SL′(χ, 0) =
∑

[a]∈Pic(O)

χ(a)ζ ′(∆r, τ, 0)

= − 1
12

log |
∏

[a]∈Pic(O)

∆r(τ)χ(a)|.

2
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4. Proof of Theorem 2.1

In this section, applying the method developed by Gross in [Gr] to the

elliptic curve E in Theorem 2.1, we shall prove Theorem 2.1.

Let l ∈ {3, 5, 7}. Let E be an elliptic curve defined over Q of conductor

N with a Q-rational cuspidal l-torsion point P . Let f ∈ Q(E) such that

div f = lP . Then f induces a homomorphism

δ : E(L)/lE(L) → L∗/(L∗)l.

In particular, when χ 6= 1, we have

δ(PE(d1, d2)) =
∏

[a]∈Pic(O)

f(φ((O, n, [a])))χ(a).

Let gr :=
∏

d|N ηrd
d be the Dedekind eta-product satisfying div gr =

lπ∗(P ). Since div(f ◦ φ) = l(π∗(P ) + div g) for some g ∈ Q(X0(N)), we

have

f ◦ φ = α · gr · gl

for some constant α ∈ Q. Thus

δ(PE(d1, d2)) = βl ·
∏

[a]∈Pic(O)

gr((O, n, [a]))χ(a)

= βl ·
∏

[a]∈Pic(O)

∆r((O, n, [a]))
χ(a)
24 ,

for some β ∈ L. Let Eχ :=
∏

[a]∈Pic(O) ∆r((O, n, [a]))
χ(a)
24 . Then

δ(PE(d1, d2)) ≡ Eχ (mod (L∗)l).

By Proposition 3.1,

log |Eχ| = −S

2
L′(χ, 0).

The L-function factors as L(χ, s) = L(χd1 , s)L(χd2 , s). Since L′(χd1 , 0) =

h1 log u and L(χd2 , 0) = 2h2/w, we have

log |Eχ| = (h1h2S/w) log u,

where u is the fundamental unit of the real quadratic field Q(
√

d1) and w is

the number of units in the imaginary quadratic field Q(
√

d2). Hence

Eχ = ζ · uh1h2S/w,
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where ζ is a root of unity in (L∗)χ. Since (l, w) = 1, ζ is a lth-power

and δ(PE(d1, d2)) is a lth-power if and only if l|h1h2S. So if l 6 |h1h2S, then

δ(PE(d1, d2)) is nontrivial in L∗/(L∗)l. Since E(L)χ = E(k1)χd1
⊕

E(k2)χd2 ,

if the quadratic twists Ed1 , Ed2 have no Q-rational l-torsion points, then

PE(d1, d2) is of infinite order in E(L)χ. 2

5. Proof of Theorem 1.2

In this section, using the method developed by Vatsal in [V1], we shall

prove Theorem 1.2. A new ingredient in this proof is using an indivisibility

property of class numbers of quadratic fields in [By] instead of Scholz’s

reflection theorem used in [V1].

Let N be a square-free positive integer. Let E be an elliptic curve defined

over Q of conductor N with a Q-rational cuspidal 3-torsion point P . Let ε

be the sign of the functional equation of L(E, s). Let t ≡ 3 (mod 4) be a

positive square-free integer such that every prime p|N splits in K = Q(
√
−t)

with DK = −t. Let c ≡ 1 (mod 4) be a positive square-free integer such

that gcd(c, tN) = 1. Let χ 6= 1 be the ring class character of K which is

determined by a factorization

D = DKc2 = d1d2,

where d1 = c and d2 = DKc = −tc. Then

D = −tc2 = B2 − 4NC

has integer solutions with gcd(N,B, C) = 1. So we can define the Heegner

point PE(d1, d2) ∈ E(L)χ.

Let gr :=
∏

d|N ηrd
d be the Dedekind eta-product satisfying div gr =

3π∗(P ). Since N is square-free, if 3 |
∑

d|N χ(d)rd for all χ 6= 1, then 3 | 2srd

for all d|N , where s is the number of different prime factors of N . In this

case, 3|r(d) for all d|N and π∗(P ) should be trivial. But it is impossible. So

we can always choose χ 6= 1 such that 3 6 |
∑

d|N χ(d)rd.

By a theorem of Davenport and Heilbronn [D-H], which is refined by

Nakagawa and Horie [N-H] and a theorem of the author [By], which also

can be easily refined as the form of congruence class in [N-H], we know that
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a positive proportion of positive square-free integers c satisfies the following

conditions for a fixed t and a fixed χ 6= 1 such that 3 6 |
∑

d|N χ(d)rd;

(i) c ≡ 1 (mod 4) and gcd(c, tN) = 1,

(ii) χc(d) = χ(d) for all d|N ,

(iii) 3 6 |h1h2,

where h1 is the class number of the real quadratic field Q(
√

c) and h2 is

the class number of the imaginary quadratic field Q(
√
−tc). We note that

for only finitely many d1 = c and d2 = −tc, Ed1 and Ed2 have Q-rational

3-torsion points and gcd(3, w) = 1.

Thus by Corollary 2.2, if εχ(n) = 1, for a positive proportion of positive

square-free integers c, Ords=1L(Ec, s) = 0 and Ords=1L(E−tc, s) = 1. Sim-

ilarly if εχ(n) = −1, for a positive proportion of positive square-free integers

c, Ords=1L(Ec, s) = 1 and Ords=1L(E−tc, s) = 0. Hence we completed the

proof of Theorem 1.2. 2
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